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Continuously varying critical exponents in a sandpile model with internal disorder
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A sandpile model with an internal disorder is presented. The updating of critical sites is done according to
a stochastic rule~with a probabilistic topplingq). Using a unified mean-field theory and numerical simulations,
we have shown that the criticality is ensured for any value ofq. The static critical exponents have been
calculated and found to be the same as those obtained for the deterministic sandpile model, which is a
particular case of the stochastic model. They have a universalq-independent behavior. In the limit of slow
driving, we have developed a relation between our model and the branching process in order to compute the
size exponentt. It presents a continuous variation with the parameter of topplingq.
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I. INTRODUCTION

Piles of granular material are examples of driven op
dynamical systems that often demonstrate catastro
events in the form of avalanches. In a series of papers@1–4#,
Bak and co-workers introduced the concept of ‘‘se
organized criticality’’~SOC! in order to study these system
The basic idea is that these systems are driven into a cri
state without a fine tuning of any control parameter. T
SOC phenomenon was observed in other fields such as
ogy @5#, economics@6#, forest fire models@7#, earthquakes
@8#, the game of life@9#, invasion percolation@10#, etc. It is
often asserted that the sandpile models might explain
frequent occurrence of both 1/f a noise@11# and self-similar
spatial structures. Therefore, the understanding of the s
organized critical system behavior promised to bring m
light into the creation of the 1/f a type noise signals and
fractal structures in nature.

Such models exhibit different behaviors depending
whether the rules of evolution are based on the absolute
heights@12,13# of the pile or whether they depend on th
local slopes@12–14# or on the Laplacian of the sand heig
function @12#. So as to explain this new phenomena, so
theories have been elaborated. Dhar showed that a large
of absolute height was Abelien@15#. This property led to a
particularly simple equiprobable partitioning in configurati
space and allowed an exact solution of these models. A s
pile model with anisotropic geometry was studied within
dynamical renormalization group framework and vario
critical exponents were determined exactly in all dimensio
@16#. Nevertheless, the universality classes in sandpile m
els remains an unresolved issue@17,18#. Even if it neglects
correlations, the mean-field theory remains the simplest
oretical approach to SOC, which gives qualitative and qu
titative descriptions of the system behavior@2,19–26#.

Although SOC is frequently observed in sandpile mod
using numerical simulations@1,12,27,28# or analytical ap-
proaches@2,19,25#, there is no evidence of self-organize
critical dynamics in real piles of granular material. Fre
et al. @29# studied experimentally the dynamical behavior
the driven quasi-one-dimensional pile of rice. They show
that the dynamic depends on the grain shape. The SOC s
1063-651X/2002/66~4!/041302~9!/$20.00 66 0413
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in which the avalanche size distribution has a power-l
component with critical exponentt52.02, has been estab
lished for elongated grains. The experimental results
Fretteet al. @29# and other theoretical studies of the dynam
ics of granular material@30# reveal that many physical prop
erties of the pile granular material are important for the SO
state to be established. Several theoretical efforts have b
made so as to describe real piles of granular material
incorporating randomness into the toppling rules@18,31–34#.
However, the gravity effects, grain friction, and the loc
conditions on the pile are taken into account in a simple w
through a parameterp. The value of the parameterp decides
whether the grain will stop on the site or topple to neighb
ing sites.

Disorder in sandpile models can be induced from pro
bilistic rules. Lübecket al. @34# studied numerically a sand
pile model which exhibits self-organized criticality and no
equilibrium phase transition as the probabilistic toppli
parameterp is varied. When the system displays SOC beh
ior, the corresponding exponents have a nonunive
p-dependent behavior. This nonuniversal behavior was
served also in a class of nonlocal unlimited sandpile mod
with stochastic dynamics@32#. Then, the two critical expo-
nents which determine the dependence of the probab
density on time and system size both depend continuousl
a probability toppling parameter. A stochastic dynamics w
elaborated following a different method by introducing
temperaturelike parameterT @35,36#. As a matter of fact, the
criticality of sandpiles in thermal equilibrium is ensured wi
apparently continuously varying critical exponents atTs0.
On the other hand, the friction effect between the grains i
pile of granular material was modeled by introducing a s
chastic rule in the relaxation process@33#. Such models with
local and nonlocal relaxations belong to different univers
ity classes. Recently, varying critical exponents were
served in an artificial version of the Dhar and Ramaswa
sandpile model@37#.

The aim of this paper is to investigate the stochastic eff
of critical sites in a sandpile model using a unified mea
field theory proposed by Vespignani and Zapperi@25# and
rejoin the branching process limit@21# in order to compute
the dynamical critical exponents. Our model contains th
©2002 The American Physical Society02-1
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types of sites: stable, critical, and active, and we assume
the critical sites possess a probabilistic toppling parameteq.
We believe that the introduction of such a parameter ta
into account the microscopic details of the process and t
describes an internal randomness, which is inherent in
dynamics. We show that the stochasticity does not affect
ther the phase diagram or the static critical exponents
deterministic sandpiles, while the size distribution critic
exponentt depends strongly on the parameterq. In the fol-
lowing section we will describe our model. In Sec. III w
develop the method and illustrate the results. Finally,
conclude in Sec. IV.

II. MODEL

Recently, a great deal of effort has been made in the st
of SOC introduced by Bak and co-workers. In this new ph
nomena, a system, under time evolution of its own dynam
reaches a critical state which lacks any characteristic len
or time scales and obeys power-law distributions.

Sandpile models are cellular automata defined on
d-dimensional lattice. They are characterized by an inte
variable~energy! zi at all sitesi. The system is then driven b
choosing a random sitei and incrementing the value ofzi by
1, i.e.,

zi→zi11. ~1!

If zi thereby exceeds a threshold valuezc , the site i
topples and the grains are distributed from the sitei to its
nearest neighbors~NN!, i.e.,

zi→zi2zc , ~2!

zNN→zNN11,

possibly causing some of them to be unstable too, an
cascade of toppling or avalanche is triggered. The avalan
may continue for some time and is stopped only if all va
ableszi are below the threshold value or by sand falling o
the edges. The total amount of sliding,S, induced by the
single perturbation represents the avalanche size. After e
perturbation, the stationary state is restored and another
is perturbed and so on. Therefore, the dynamics of the m
summarizes the deposition and relaxation and it is assu
that the relaxation process is considered to be fast comp
to the deposition. The separation between the buildup and
relaxation has profound effects on the global avalanche
tistics. Under this condition, the system reaches a station
state characterized by avalanches whose sizes S are di
uted as a power law@1,12,14,38#.

As a basic model we use that proposed by Vespignani
Zapperi @25#, and investigate the robustness of the critic
behavior upon the modification of the toppling process. S
cifically, we study a stochastic variant of the model propos
in Ref. @25#. Then, in our model each site can be charac
ized by three possible states: active, whenzszc ; critical,
whenz5zc ; and stable forzazc . We assume that the criti
cal state can topple at timet with a probabilityq if one of its
NN topples at a preceding stept21, while the active site
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relaxes immediately as it receives a grain of energy. T
updating of toppling sites is in parallel. In contrast to R
@25#, a critical site has a stochastic character. The avalan
stops at a timet as soon as all sitesi have zazc and no
toppling occurs due to the internal disorder. The energy g
given by the presence of internal randomness can be u
only if the site is in the front of an avalanche, i.e., if th
avalanche touches one of its neighbors. We are accusto
using numerical simulations, to separating time scales:
avalanche that might be started by a deposited grain
have ended before a new grain is deposited. However,
site evolution depends upon the whole system configura
and it is hard to describe this nonlocal interactions. Thus,
incorporate all these interactions in a nonvanishing proba
ity h. By formal analogy with critical phenomena, the role
the magnetic fieldh is played by the external flux of sand
i.e., h is the probability per unit time that a site will receiv
a grain of energy. Therefore, the state of a single site depe
only on the state of the site itself and its NN sites at previo
time step via the transition probabilities.

III. METHOD AND RESULTS

A. Mean-field theory

As in Ref.@25# the simplest description of SOC models
through ad-dimensional stochastic cellular automata w
N5Ld sites, whereL is the lattice linear size. Each sitei on
the lattice is characterized by an occupation variablesi ,
which can assume different values depending on the en
accumulated in this site. The whole lattice is then charac
ized by a configurations5$si% and the evolution of the sys
tem is determined by the transition probabilityW(s/s8) from
configurations8 to configurations. At each time step the
state of a given site depends only on the previous state o
site itself and the set of sites interacting with it. Thus, w
consider the probability distributionP(s,t) to have a con-
figurations at time t. Then in a configurations and at timet
we can express the average value of any functionA(s,t) by

^A~ t !&5(
s

A~s,t !P~s,t !. ~3!

The dynamical evolution of the probability distribution
given by the following continuum master equation~ME!:

]

]t
P~s,t !5(

s8
W~s/s8!P~s8,t !2W~s8/s!P~s,t !, ~4!

where the first term of the right hand side expresses the in
rate from the configurations and the second term express
the output rate from the configurations to the configuration
s8. For nonequilibrium systems we must solve the ME in t
stationary state limit. To do this, we use the dynamic clus
variation approach@22,25# within the mean-field theory,
which neglects the correlations up to a certain order.

Before proceeding to give different transitions probab
ties between several configurations, we first develop so
ideas concerning the dynamical evolution of our system.
has been underlined in the preceding section, we can ass
2-2
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mainly for each site three states: active (si5a), critical (si
5c), and stable (si5s). Active sites are those transferrin
energy by interacting with nearest neighbors; critical si
become active with the addition of energy; and stable
those that do not relax if energy is added to them by exte
fields or interactions with active sites. This description
only approximate, since a certain amount of information
lost in grouping together stable sites. In the simple me
field single-site approximation, we denote byra , rc , and
rs , the average densities of sites in the active, critical, a
stable states, respectively. These densities can be writte

rk~ t !5(
$s%

d~si2k!P~s,t !, ~5!

where k5a,c,s and d denotes the Kronecker symbo
Finally, we get@32#

]

]t
rk~ t !5(

$s8%

w~k/s8!)
i

rs
i8
2rk~ t !, ~6!

where w(k/s8) is the one-site transition probability an
rsi

(t) measures the single-site probability. All the dynamic
information of the system is contained in the transition ra
w(k/s8) given by the reaction rates. However, the sandp
model is inherently nonlocal. Thus, as it has been evoke
the preceding section, by introducing the external flow
energy we recuperate the nonlocal interactions. Con
quently, the transition rates depend only on the fieldh and on
the state of the NN sites that determine the toppling dyna
ics and then approximate an avalanche. The nonlocality
the dynamical rules is recovered in the limith→0 ~see Sec.
III B !.

Independently of the initial conditions, the system org
nizes itself in a critical state characterized by a power-l
distribution and therefore without any characteristic length
time scale. The interesting point is that unlike ordinary cr
cal phenomenon, no tuning of any control parameters is n
essary to reach this state. In other words, the critical sta
an attractor for the dynamics, and the parameters of the
tem flow spontaneously to the critical value. For this reas
it is interesting to investigate how robust the critical stea
states of these sandpile models are under changing the
namical rules which define them. In our model we introdu
internal perturbation, which is related to the critical sites;
if the energy of sitei is equal to the threshold valuezc and if
one of its NN topples at a preceding stept21, the toppling
in the sitei will occur only with a probabilityq. Thus, our
model differs from that proposed by Vespignani and Zapp
@25# because the randomness is internal and intrinsic in
dynamics.

Now we can write the transition probabilities by negle
ing the contribution due to the presence of multiple act
NN sites. The density of active sites is derived by consid
ing all contributions: the allowed transitions to the acti
state are due to the noncritical toppling sites that can rec
energy from the external field or from the NN sites. The fi
possibility to consider is that all the NN sites are stable a
the addition of energy comes from outside, so we have
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$sNN8 %

w~a/c,sNN8 Þa andÞct!~12qAc!rc )
i PNN

rs
i8(t)

5h~12qAc!rc~12ra2qAcrc!
Z, ~7!

wherez represents the number of NN sites, and the factorAc
denotes the probability that one of the neighboring sites
active at a previous time. The notationct refers to the critical
sites which can topple with a probabilityq if one of its near-
est neighbors topples at a previous step.

The possibilities other than the first one are the result
the transfer of energy from NN sites. This process cor
sponds to the following two terms:

(
$sNN8 %

w~a/c,si85a,sj Þ i8 Þa and Þct!

3~12qAc!rcra )
j Þ i NN

rs
j8(t)

5~12h!~g212e!~12qAc!rcra

3~12ra2qAcrc!
Z21, ~8!

(
$sNN8 %

w~a/c,si85ct ,sj Þ i8 Þa and Þct!

3~12qAc!rcqAcrc )
j Þ i NN

rs
j8(t)

5~12h!~g212e!~12qAc!rcqAcrc

3~12ra2qAcrc!
Z21, ~9!

where the parametere identifies the average energy diss
pated in each elementary process, which can be due to
boundary or bulk dissipation@25#.

Equation~8! expresses the fact that only one of the N
sites is active and yields its energy to the sitei, the other NN
sites are neither active nor critical toppling sites; while
Equ. ~9! only one of the NN sites is a critical toppling sit
which transfers its energy to the sitei. We suppose that the
active site (s5a) and the critical toppling site (s5ct),
which containg and (g21) grains of energy, respectively
by relaxing lose (g21) grains of energy. Thus the active si
that relaxes creates a stable site with one level of energy,
the critical toppling site generates a stable site with a z
level of energy. Neglecting higher orders inh and ra from
Eqs. ~8! and ~9!, we can finally write the mean-field~MF!
dynamical equation for the densities of active sites:

]ra

]t
52ra1~g212e!rc~ra1qAcrc!~12qAc!

1hrc~12qAc!. ~10!

Next, we derive the dynamical MF equation for the dens
of stable sites. The density of critical sites can be dedu
from the normalization equation. As it has been emphasi
above, the stable state contains several levels of energ
fact,

rs5 (
n50

g22

rn ,
2-3
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wherern describes the probability that a site is in leveln.
Thus, following the same strategy used above, we get

]r0

]t
52hr02~g212e!r0~ra1qAcrc!1qAcrc ,

~11!

]r1

]t
52hr12~g212e!r1~ra1qAcrc!1ra

1hr01~g212e!r0~ra1qAcrc!, ~12!

and for 2<n<g22,

]rn

]t
52hrn2~g212e!rn~ra1qAcrc!

1hrn211~g212e!rn21~ra1qAcrc!. ~13!

So we have

]rs

]t
52hrg222~g212e!rg22~ra1qAcrc!1ra1qAcrc .

~14!

If we denote byu the fraction of stable sites receiving
quantum energy that will contribute to thes→c process, i.e.,
the fraction of stable sites which are subcritical,

u5
rg22

rs
;

rg22

(
i 50

g22

r i

, ~15!

the dynamical equation for density of stable sites is then

]rs

]t
52uhrs2~g212e!urs~ra1qAcrc!1ra1qAcrc .

~16!

If we consider all the possible processes forAc , we can
write

Ac5ra~12ra!z21rg22'rarg22 , ~17!

Ac5ursra . ~18!

In the stationary state, we haver15r25•••5rg22. Then,
we obtain the result

u5
1

g21
. ~19!

In the following, we will consider the stationary propertie
Combining the normalization equation with the stationa
limit of Eqs. ~10! and ~14!, we obtain the following set of
coupled equations:

ra5uhrs1u~g212e!rs~ra1uqrsrarc!2uqrsrcra ,

ra5hrc~12uqrsra!1~g212e!rc~ra1uqrsrarc!

3~12uqrsra!, ~20!
04130
ra512rs2rc .

By expandingra(h) for small values ofh and after some
algebra, we obtain from Eqs.~20!,

ra~h!5
h

~11qursrc!e
1u~h2!. ~21!

By substituting the expression of the active densityra in the
second equation of the system~20! we obtain the following
equation, which connects only the stable and critical den
ties:

~g21!rc1uq~g21!rsrc
22150, ~22!

or in the stationary state no active site is present in the s
tem. Then, using the normalization equationrs;12rc we
obtain a closed equation

uqrc
32uqrc

22rc1
1

g21
50, ~23!

for which the solution can be approached by a polynom
function onq:

rc5
1

g21
2q f1~1/g!1q2f 2~1/g!1u~q3!, ~24!

where f i(1/g)( i 51,2) are polynomial functions on 1/g. In
analogy with other nonequilibrium phenomena@39,40#, the
order parameter is defined byPa5ra1qursrcra , which
vanishes at the critical point. In order to define the respo
function that determines how the system rearranges itself
study the effect of infinitesimal perturbationDh on the
steady state:

xh,e5 lim
h→0

DPa

Dh
5

]Pa

]h U
h50

. ~25!

Since the density of active sites can be written as

ra~h!5
h

~11qursrc!e
1u~h2!, ~26!

the singular part of the susceptibility diverges as

x}e2g with g51. ~27!

Then, a long-ranged response function occurs fore50,
where the system reaches its critical point. This behavio
confirmed by studying numerically, for different values ofq
~Fig. 1!, the response of a bidimensional system of line
sizeL564 under infinitesimalh perturbation, which is the
probability for unit time that a site receives an energy gra
We model the dissipation by introducing a probabilityp
5e/(g21), for which the energy in relaxation is lost rath
then being transferred. We observe that the susceptibility
verges ate50 for any value ofq. As the drivingh and the
dissipatione rates identify the two relevant scaling fields, th
phase diagram we obtain is similar that of determinis
2-4
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sandpiles@25#, namely, that the model is supercritical forh
s0, while for h50 andes0, it is subcritical and the dy-
namics displays avalanches. In spite of the internal diso
induced by stochastic rules, the mean-field critical expone
g, m, n, andd associated, respectively, with the susceptib
ity x,x;e2g; the dissipatione, e;L2m; the correlation
lengthj, x;j2n; and the order parameterPa , Pa;h1/d are
the same as those of the original model@25# (g51, m52,
n51/2, d51). These results agree with those obtained
Caldarelli@41#, who introduced in the toppling rules a prob
ability that depends on a parameterlike temperature. We h
studied numerically the model introduced by Bak, Tang, a
Weisenfeld~BTW! with open boundaries and a finite drivin
rateh for a bidimensional system. The dissipation is cons
ered only through the open boundary where the site trans
its energy outside. The variation of the order parameter
sush ~Fig. 2! is linear with a slope that increases with th
system size asL2 and a density of active sites that goes
zero in theh→0 limit (d51) independently ofq ~Fig. 3!,
which supports the result given by the mean-field theory

Moreover, the ‘‘cluster variational’’ method takes into a
count the long-term behavior of the system and we can

FIG. 1. ~a! The susceptibilityxe5dPa /dh as a function of a
dissipatione with different values ofq for a system with periodic
boundary conditions and sizeL564. ~b!The log10-log10 plot of the
susceptibility versusq. The straight lines represent the fit of tw
values of q (q50 and 0.5!. The mean-field critical exponentg
associated with the susceptibility isq-independent.
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proximate the avalanches by several series of succes
topples. Thus, we prepare the system in one of the ‘‘natu
configurations corresponding to the limit of infinitesim
driving, Dh(x)5d(t)d(x), i.e., consisting of a single activ
site. The perturbation decays in the stationary subcrit
state as

ra~ t !;thF„t/tc~e!…, ~28!

where we introduce the power-law exponenth and the cutoff
characteristic timetc . For a small perturbation close to th
stationary state, we considerrk(t)5rk1drk(t), where
drk(t) is the deviation of the densities from their stationa
value. If we recall the expression of the order parameterPa
and rewrite its evolution equation

]

]t
Pa5~11uqrsrc!@2ra1~g212e!rc~ra1qAcrc!#,

~29!

we will obtain

]

]t
~dPa!5~11uqrsrc!@2dra1~g212e!rcdra

3~11qurcrs!#. ~30!

Then, the linearized dynamical equation in diagonal form
given by

]

]t
~dPa!5~dPa!S 2

e

g21D , ~31!

for which the solution is

dPa~ t !;expS 2et

g21D , ~32!

which impliesh50. Since the relaxation behavior follow
an exponential law

dPa~ t !;exp~2t/tc!, ~33!

the characteristic relaxation time depends on the topp
probability q and its behavior is given by

tc;1/e. ~34!

Since our model is based on stochastic rules, its dynamic
different from that of the deterministic sandpile model. Bo
active sites and critical sites which topple with a probabil
q contribute to the avalanche. We are therefore enable
derive scaling relations that allow us to compute the dyna
cal exponents as was done in Ref.@25#. Then, the distribution
size critical exponentt is calculated using the relation be
tween the formalism presented above and the branching
cesses.

B. Branching process and numerical simulations

The spreading of an avalanche in mean-field theory
be described by a front consisting of noninteracting partic
2-5
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FIG. 2. The order parameter as a function of the driving rath
for different values ofq, ~a! q50, ~b! q50.3, ~c! q50.54 in the
BTW model with boundary dissipation plotted for different syste
sizesL.
04130
that can either trigger subsequent activity or die out. T
kind of process is well known and is called the branchi
process@42#. The SOC has been investigated and it has b
proposed that the mean-field behavior of sandpile mod
can be described by a critical branching process@19–
21,23,43#. A branching process@42# is defined by the numbe
of active sites that can either die or generaten new sites with
certain probabilities. The casen52 is the simpler example: a
site relaxes with probabilityp, leading to two new active
sites, and it dies with probability (12p). There is a critical
valuepc51/2 such that forpspc the probability to have an
infinite avalanche is nonzero, while forpapc all avalanches
are finite. Thusp5pc corresponds to the critical case, whe
avalanches are power-law distributed@21#. Thus, the ava-
lanche can be described as a branching process with a
fective parameter that depends on the detail of the mo
under study.

In our model, the branching process is associated with
propagation of active and toppling critical sites in the su
critical regime. In the stationary state forh50, an active site
and critical toppling site generatesk51, . . . ,g21 new ac-
tive and critical toppling sites with probabilities

Pk5~12e!Cg21
k ~rc1uqrs!

k~12rc2uqrs!
g212k,

~35!

while no active or toppling critical sites are generated w
probability

P05e1~12e!~12rc2uqrs!
g21. ~36!

Then, the branching process control parameter for our mo
is given by

P̃5
1

g21 (
k

kPk5~12e!~rc1uqrs!, ~37!

with a critical valueP̃c5rc* 1uqrs* , wherers* andrc* , are
respectively, the stationary values of critical and stable d

FIG. 3. log10-log10 plot of the order parameterPa versush with
e50.01,g53, and system sizeL5128. We show that the critica
exponentd is constant with the variation ofq.
2-6
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FIG. 4. The size distributionD(S) for two generationsn516 andn520 with g53. The dynamical exponent varies continuously w
q. We obtain for different values ofq ranging from 0 to 0.8, respectively,t51.5, 1.37, 1.19, 1.07, and 0.98. The insets in these figures s
the numerical simulation of the BTW model with system sizeL532; the dynamical exponent takes, respectively, the valuest51.28, 1.23,
1.14, 1.05, and 0.94 forq50, 0.1, 0.3, 0.5, and 0.8.
t
p-

nt

ith
an

0
al-
sities. Forq50 we recoverP̃c51/2, which is in agreemen
with Ref. @21#. In our analysis, we focus on the model pro
erties in the critical steady state characterized byP̃c . We
study the model by carrying out simulations for differe
system sizes withg53, and averaging over typically 5
04130
3106 realizations. The model leads to a variety of states w
widely varying avalanche sizes. We define the size of
avalanche as the number of topplingsS, and investigate the
distribution of S. In Fig. 4, we have shown for 16 and 2
generations, the avalanche size distribution for different v
2-7
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A. BENYOUSSEF, A. EL KENZ, M. KHFIFI, AND M. LOULIDI PHYSICAL REVIEW E66, 041302 ~2002!
ues of the toppling parameterq. For q50 we observe a
scaling regionD(S);S2t with t53/2. Then, we find again
the value given by both the mean-field theory and branch
process for a deterministic sandpile model. By varying
parameterq, the critical state is ensured, but the value of t
critical exponentt decreases continuously by increasing t
value ofq. This result is consistent with Ref.@32#. In Fig. 4.
we have shown the size distribution forq50.1, 0.3, 0.5, and
0.8, which lead, respectively, to the critical exponentst
51.37, 1.19, 1.07, and 0.98. In the limitq→1, the model is
deterministic but not equivalent to the model presented
Vespignani and Zapperi@25#. Indeed, the dynamics is rathe
different, since only critical sites that receive a grain of e
ergy at a previous time topple with a probabilityq51. As a
result, the model in the limitq→1, belongs to another uni
versality class. To support the result obtained using
branching process, we have performed numerical simulat
for a BTW model on a square lattice of sizeL532. In Fig. 4,
we have shown that the numerical results agree with th
obtained by mean-field theory, namely, that the dynam
critical exponentt decreases continuously by varying th
toppling probabilityq. We remark that the mean-field value
of t are greater than numerical ones, and they get close
q→1 ~Fig. 5!. In addition, we note that the dynamical crit
cal exponents vary linearly within numerical simulations.

FIG. 5. Dynamical exponent versusq obtained ~a! by the
branching processes and~b! by numerical simulation of the BTW
model.
s

04130
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IV. CONCLUSION

To summarize, a sandpile model with a stochastic dyna
ics is studied using a single-site approximation to the ma
equation obtained from a mean-field theory. Within this a
proach, and by computing the order parameter, we have
sented the mean effect of the stochastic rule with probab
tic toppling parameterq. In the limit of infinitesimal driving
h, the system is subcritical fores0 and displays a critica
behavior. The phase diagram obtained from the control
rameters is similar to those of deterministic sandpile mod
The static critical exponents (g,m,n,d) are independent o
the internal disorder, i.e.,q, and they keep the same value
within the mean-field theory, obtained for the sandpile mo
with deterministic rules. In order to support the mean-fie
results, we have studied numerically the BTW model ind
52 in both cases: with a fixed dissipatione and periodic
boundary conditions so as to study the behavior of the s
ceptibility x, and with a finite driving rateh and boundary
dissipation for open boundary conditions, in order to sh
that the order parameter vanishes linearly withh(d51). As
a result, the predictions of the mean-field theory seem to
correct and valid for any dimensions independently of
internal disorder. Since the dynamics of our model evolv
within stochastic rules, we are not able to establish sca
relations which allow us to compute the dynamical exp
nents. However, using the branching process we have
fined an adequate control parameter for our model and g
erate avalanches of different sizes. Then, we have shown
the size distribution critical exponent decreases continuou
by increasing the value ofq. Therefore, the dynamical expo
nents have a nonuniversal behavior, i.e.,q-dependent behav
ior, in agreement with other stochastic sandpile models@34#.
This result has been confirmed using numerical simulatio
Since the metastability in sandpile models can result fr
competition between friction and gravity effects, we thin
that varying critical exponents are the result of stocha
dynamics which model metastable sites. However, it
worthwhile to confirm analytically this result.
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