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Continuously varying critical exponents in a sandpile model with internal disorder

A. Benyoussef, A. El Kenz, M. Khfifi, and M. Loulidi
Laboratoire de Magnetisme et de Physique des Hautes Energies, Departement de PhysiquedEacstiences, Mohammed University,
Boite Postal 1014, Rabat, Morocco
(Received 30 March 2002; published 7 October 2002

A sandpile model with an internal disorder is presented. The updating of critical sites is done according to
a stochastic ruléwith a probabilistic topplingy). Using a unified mean-field theory and numerical simulations,
we have shown that the criticality is ensured for any valuey.ofrhe static critical exponents have been
calculated and found to be the same as those obtained for the deterministic sandpile model, which is a
particular case of the stochastic model. They have a universalependent behavior. In the limit of slow
driving, we have developed a relation between our model and the branching process in order to compute the
size exponent. It presents a continuous variation with the parameter of topgling

DOI: 10.1103/PhysRevE.66.041302 PACS nunierd5.70—n, 05.65:+b, 05.40--a, 64.60-i

[. INTRODUCTION in which the avalanche size distribution has a power-law
component with critical exponent=2.02, has been estab-
Piles of granular material are examples of driven operlished for elongated grains. The experimental results of
dynamical systems that often demonstrate catastrophiEretteet al.[29] and other theoretical studies of the dynam-
events in the form of avalanches. In a series of pajerd], ics of granular materidl30] reveal that many physical prop-
Bak and co-workers introduced the concept of “self- erties of the pile granular material are important for the SOC
organized criticality”(SOQ in order to study these systems. state to be established. Several theoretical efforts have been
The basic idea is that these systems are driven into a criticahade so as to describe real piles of granular material by
state without a fine tuning of any control parameter. Theincorporating randomness into the toppling ryl&8,31-34.
SOC phenomenon was observed in other fields such as bioHowever, the gravity effects, grain friction, and the local
ogy [5], economicg 6], forest fire modelg7], earthquakes conditions on the pile are taken into account in a simple way,
[8], the game of lifg[9], invasion percolatiofi10], etc. It is  through a parametgqy. The value of the parametprdecides
often asserted that the sandpile models might explain theshether the grain will stop on the site or topple to neighbor-
frequent occurrence of bothfZ/ noise[11] and self-similar  ing sites.
spatial structures. Therefore, the understanding of the self- Disorder in sandpile models can be induced from proba-
organized critical system behavior promised to bring morebilistic rules. Libecket al. [34] studied numerically a sand-
light into the creation of the 1 type noise signals and pile model which exhibits self-organized criticality and non-
fractal structures in nature. equilibrium phase transition as the probabilistic toppling
Such models exhibit different behaviors depending orparametep is varied. When the system displays SOC behav-
whether the rules of evolution are based on the absolute sandlr, the corresponding exponents have a nonuniversal
heights[12,13 of the pile or whether they depend on the p-dependent behavior. This nonuniversal behavior was ob-
local sloped12-14 or on the Laplacian of the sand height served also in a class of nonlocal unlimited sandpile models
function [12]. So as to explain this new phenomena, somewith stochastic dynamicg32]. Then, the two critical expo-
theories have been elaborated. Dhar showed that a large classnts which determine the dependence of the probability
of absolute height was Abeligii5]. This property led to a density on time and system size both depend continuously on
particularly simple equiprobable partitioning in configuration a probability toppling parameter. A stochastic dynamics was
space and allowed an exact solution of these models. A sanedaborated following a different method by introducing a
pile model with anisotropic geometry was studied within atemperaturelike paramet@&r[35,36. As a matter of fact, the
dynamical renormalization group framework and variouscriticality of sandpiles in thermal equilibrium is ensured with
critical exponents were determined exactly in all dimensionsapparently continuously varying critical exponentsTat0.
[16]. Nevertheless, the universality classes in sandpile modon the other hand, the friction effect between the grains in a
els remains an unresolved isslie7,18. Even if it neglects pile of granular material was modeled by introducing a sto-
correlations, the mean-field theory remains the simplest thechastic rule in the relaxation procds3]. Such models with
oretical approach to SOC, which gives qualitative and quanlocal and nonlocal relaxations belong to different universal-
titative descriptions of the system behavjg@r19-24. ity classes. Recently, varying critical exponents were ob-
Although SOC is frequently observed in sandpile modelsserved in an artificial version of the Dhar and Ramaswamy
using numerical simulationfl,12,27,28 or analytical ap- sandpile model37].
proaches[2,19,29, there is no evidence of self-organized The aim of this paper is to investigate the stochastic effect
critical dynamics in real piles of granular material. Fretteof critical sites in a sandpile model using a unified mean-
et al. [29] studied experimentally the dynamical behavior of field theory proposed by Vespignani and Zapgd@5| and
the driven quasi-one-dimensional pile of rice. They showedejoin the branching process linfi21] in order to compute
that the dynamic depends on the grain shape. The SOC statee dynamical critical exponents. Our model contains three
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types of sites: stable, critical, and active, and we assume thatlaxes immediately as it receives a grain of energy. The
the critical sites possess a probabilistic toppling paranteter updating of toppling sites is in parallel. In contrast to Ref.
We believe that the introduction of such a parameter takef25], a critical site has a stochastic character. The avalanche
into account the microscopic details of the process and thestops at a time as soon as all sites have z<z, and no
describes an internal randomness, which is inherent in th@sppling occurs due to the internal disorder. The energy gain
dynamics. We show that the stochasticity does not affect eigiven by the presence of internal randomness can be used
ther the phase diagram or the static critical exponents obnly if the site is in the front of an avalanche, i.e., if the
deterministic sandpiles, while the size distribution critical avalanche touches one of its neighbors. We are accustomed,
exponentr depends strongly on the parametern the fol-  using numerical simulations, to separating time scales: any
lowing section we will describe our model. In Sec. lll we avalanche that might be started by a deposited grain will
develop the method and illustrate the results. Finally, wenave ended before a new grain is deposited. However, the
conclude in Sec. IV. site evolution depends upon the whole system configuration
and it is hard to describe this nonlocal interactions. Thus, we
Il. MODEL incorporate all these interactions in a nonvanishing probabil-
ity h. By formal analogy with critical phenomena, the role of
Recently, a great deal of effort has been made in the studihe magnetic fielch is played by the external flux of sand,
of SOC introduced by Bak and co-workers. In this new phe e, h is the probability per unit time that a site will receive
nomena, a system, under time evolution of its own dynamicsg grain of energy. Therefore, the state of a single site depends

reaches a critical state which lacks any characteristic lengthnly on the state of the site itself and its NN sites at previous
or time scales and obeys power-law distributions. time step via the transition probabilities.

Sandpile models are cellular automata defined on a
d-dimensional lattice. They are characterized by an integer

. L7 . . IIl. METHOD AND RESULTS
variable(energy z; at all sites. The system is then driven by

choosing a random siieand incrementing the value af by A. Mean-field theory
1ie., As in Ref.[25] the simplest description of SOC models is
through ad-dimensional stochastic cellular automata with
Zi—Z; +1. (1)

N=LY sites, wherd_ is the lattice linear size. Each sit@n

the lattice is characterized by an occupation variagle
which can assume different values depending on the energy
accumulated in this site. The whole lattice is then character-
ized by a configuratios={s;} and the evolution of the sys-

If z thereby exceeds a threshold valgg, the sitei
topples and the grains are distributed from the &ite its
nearest neighboré\N), i.e.,

zZ—27— 2, (2)  temis determined by the transition probabiMy(s/s") from
configurations’ to configurations. At each time step the
Zun— Zant 1, state of a given site depends only on the previous state of the

site itself and the set of sites interacting with it. Thus, we
possibly causing some of them to be unstable too, and eonsider the probability distributioR(s,t) to have a con-
cascade of toppling or avalanche is triggered. The avalancHegurations at timet. Then in a configuratios and at timet
may continue for some time and is stopped only if all vari-we can express the average value of any funcfi¢sit) by
ablesz; are below the threshold value or by sand falling off
the edges. The total amount of sliding, induced by the _
single perturbation represents the avalanche size. After each (A) Es ASDP(sY). &
perturbation, the stationary state is restored and another site
is perturbed and so on. Therefore, the dynamics of the moddlhe dynamical evolution of the probability distribution is
summarizes the deposition and relaxation and it is assumeglven by the following continuum master equativE):
that the relaxation process is considered to be fast compared J
to the deposition. The separation between the buildup and the _ , , ,
relaxation has profound effects on the global avalanche sta- EP(S’U_%: W(s/s")P(s,) ~W(S'/S)P(s,t),  (4)
tistics. Under this condition, the system reaches a stationary
state characterized by avalanches whose sizes S are distrilphere the first term of the right hand side expresses the input
uted as a power lajl,12,14,38. rate from the configuratios and the second term expresses

As a basic model we use that proposed by Vespignani anthe output rate from the configurati@to the configuration

Zapperi[25], and investigate the robustness of the criticals’. For nonequilibrium systems we must solve the ME in the
behavior upon the modification of the toppling process. Spestationary state limit. To do this, we use the dynamic cluster
cifically, we study a stochastic variant of the model proposediariation approach 22,25 within the mean-field theory,
in Ref. [25]. Then, in our model each site can be characterwhich neglects the correlations up to a certain order.
ized by three possible states: active, whenz.; critical, Before proceeding to give different transitions probabili-
whenz=z;; and stable foz<z,. We assume that the criti- ties between several configurations, we first develop some
cal state can topple at timewith a probabilityq if one of its  ideas concerning the dynamical evolution of our system. As
NN topples at a preceding stép-1, while the active site has been underlined in the preceding section, we can assume

041302-2



CONTINUOUSLY VARYING CRITICAL EXPONENTS IN . .. PHYSICAL REVIEW E66, 041302 (2002

mainly for each site three states: actiw={a), critical (s; ,

=c), and stable §=s). Active sites are those transferring 2 w(a/c,syy#a and ;&Ct)(l_ch)pci IEN Ps! (1)
energy by interacting with nearest neighbors; critical sites  {Sn! °
become active with the addition of energy; and stable are —hi1_ o z
those that do not relax if energy is added to them by external h(1=0A)pe(1=pa=qAcpe)", ™

fields or interactions with active sites. This description iswherez represents the number of NN sites, and the fadtor
only approximate, since a certain amount of information isdenotes the probability that one of the neighboring sites is
lost in grouping together stable sites. In the simple meanactive at a previous time. The notatioprefers to the critical

field single-site approximation, we denote py, pc, and  sjtes which can topple with a probabiliyif one of its near-
Ps, the average densities of sites in the active, critical, an(ést neighbors topp|es at a previous Step_

stable states, respectively. These densities can be written as The possibilities other than the first one are the result of
the transfer of energy from NN sites. This process corre-

pe() =2 8(si—K)P(s 1), (5)  sponds to the following two terms:
{st
where k=a,c,s and & denotes the Kronecker symbol. {2} w(a/c,s/=a,s{,;#a and #c)
Finally, we get[32 SNN
Y gel(32] X(1=a9A)pepa LI ps o
P J#inn !
o) =2 w(kisH [T pg—pu(t), (6) =(1=h)(g—1-e)(1-9A)pcpa

&) | X (1= pa=qAcpo)* (®)
where w(k/s’) is the one-site transition probability and
psi('[) measures the single-site probability. All the dynamical z w(alc,s =c,,s, #a and #¢c,)
information of the system is contained in the transition rates s/ ' i

w(k/s") given by the reaction rates. However, the sandpile X (1=gA) paAcpe H Ps (1)
model is inherently nonlocal. Thus, as it has been evoked in i#inn !

the preceding section, by introducing the external flow of =(1-h)(g—1-e)(1-0aAc)pcdAcpc
energy we recuperate the nonlocal interactions. Conse- X(1-pa—qAp)? Y, 9)

guently, the transition rates depend only on the freihd on

the state of the NN sites that determine the toppling dynamwhere the parameter identifies the average energy dissi-
ics and then approximate an avalanche. The nonlocality obated in each elementary process, which can be due to the
the dynamical rules is recovered in the lirit-0 (see Sec. boundary or bulk dissipatiof25].
HB). Equation(8) expresses the fact that only one of the NN
Independently of the initial conditions, the system orga-sites is active and yields its energy to the $jtthe other NN
nizes itself in a critical state characterized by a power-lavsites are neither active nor critical toppling sites; while in
distribution and therefore without any characteristic length ofequ. (9) only one of the NN sites is a critical toppling site
time scale. The interesting point is that unlike ordinary criti- which transfers its energy to the siteWe suppose that the
cal phenomenon, no tuning of any control parameters is negctive site 6=a) and the critical toppling site s=c,),
essary to reach this state. In other words, the critical state ighich containg and (@—1) grains of energy, respectively,
an attractor for the dynamics, and the parameters of the sygy relaxing lose ¢— 1) grains of energy. Thus the active site
tem flow spontaneously to the critical value. For this reasonihat relaxes creates a stable site with one level of energy, and
it is interesting to investigate how robust the critical steadythe critical toppling site generates a stable site with a zero
states of these sandpile models are under changing the divel| of energy. Neglecting higher orders linand p, from
namical rules which define them. In our model we introduceggs. (8) and (9), we can finally write the mean-fieltMF)

internal perturbation, which is related to the critical Sites; SOdynamica| equation for the densities of active sites:
if the energy of site is equal to the threshold valug and if

one of its NN topples at a preceding stepl, the toppling dpa

in the sitei will occur only with a probabilityq. Thus, our i = Pat (@7 1= €)pc(pat dAcpc)(1-0Ac)
model differs from that proposed by Vespignani and Zapperi

[25] because the randomness is internal and intrinsic in the +hp(1-gA.). (10
dynamics.

Now we can write the transition probabilities by neglect- N€xt, we derive the dynamical MF equation for the density
ing the contribution due to the presence of multiple active®' Stable sites. The density of critical sites can be deduced
NN sites. The density of active sites is derived by consider{fom the normalization equation. As it has been emphasized
ing all contributions: the allowed transitions to the active@P0Ve, the stable state contains several levels of energy. In
state are due to the noncritical toppling sites that can receiviCt,
energy from the external field or from the NN sites. The first g-2
possibility to consider is that all the NN sites are stable and pe= 2 o
the addition of energy comes from outside, so we have S A=
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where p, describes the probability that a site is in level
Thus, following the same strategy used above, we get

ap
a_toz —hpo—(9—1—€)po(pat dAcpc) +qAcpc,
(11
py
72 —hp1—(g—1—-€)p1(patdAcpc) +Pa
+hpo+(g—1—€)po(pat aAcpe), (12
and for 2<nsg-2,
pn
3 =—hp,—(g—1—€)pn(pat aAcpc)
+hpp_1+(9—1—€)pn_1(patdAcpc). (13

So we have

dp
—= —th—z—(g— 1- 6)P972(Pa+chPc)+Pa+chPc-

at
(14)

If we denote byu the fraction of stable sites receiving a

guantum energy that will contribute to tee>c process, i.e.,
the fraction of stable sites which are subcritical,

Pg-2  Pg-2
:g_nggz_’ (15)
Ps
2 Pi
=0

the dynamical equation for density of stable sites is then

ap
—2=—uhps—(g—1— €)Up(pat GAcpc) + pat qApe -
(16)

If we consider all the possible processes Ry, we can
write

Ac:pa(l_pa)27lpg—2%papg—21 (17
Ac=Upspa. (18)
In the stationary state, we hayg=p,=---=p4_,. Then,
we obtain the result
_ ! 19
u=g-1 (19

In the following, we will consider the stationary properties.
Combining the normalization equation with the stationary

limit of Egs. (10) and (14), we obtain the following set of
coupled equations:

pa=Uhpstu(g—1—€)ps(patudpspapc) —Udpspcpa,

pa=hp(l—udpspa) +(9—1—€)pc(patUdpspapc)
X(1—udpspa), (20)

PHYSICAL REVIEW E66, 041302 (2002

pa=1-—ps—pc-

By expandingp,(h) for small values ofh and after some
algebra, we obtain from Eq§20),

pa(h) +0(h?). (21

- (1+qupspc)e
By substituting the expression of the active dengifyin the
second equation of the systgi20) we obtain the following
equation, which connects only the stable and critical densi-
ties:

(9—1)pc+uq(g—1)pspg—1=0, (22
or in the stationary state no active site is present in the sys-
tem. Then, using the normalization equatiof~1—p. we
obtain a closed equation

1

+ g_—1=0, (23

ugps—Uudgp;—pe

for which the solution can be approached by a polynomial
function onq:

1
pe=g—7 ~ (1) +q*fo(1g) + 6(q®), (249

9
where f;(1/g)(i=1,2) are polynomial functions ond/ In
analogy with other nonequilibrium phenomel&9,4Q, the
order parameter is defined Wy,=p,+qupspcpa, Which
vanishes at the critical point. In order to define the response
function that determines how the system rearranges itself, we
study the effect of infinitesimal perturbatioAh on the
steady state:

Xh,e= im=ra_ %Pa (25)
hooAh oh |
Since the density of active sites can be written as
pa(h)= (1T quppo)e +6(h?), (26)
the singular part of the susceptibility diverges as
xoce ¥ with y=1. (27

Then, a long-ranged response function occurs der0,
where the system reaches its critical point. This behavior is
confirmed by studying numerically, for different valuesgpf
(Fig. 1), the response of a bidimensional system of linear
sizeL =64 under infinitesimah perturbation, which is the
probability for unit time that a site receives an energy grain.
We model the dissipation by introducing a probabiliy
=¢e/(g—1), for which the energy in relaxation is lost rather
then being transferred. We observe that the susceptibility di-
verges ate=0 for any value ofg. As the drivingh and the
dissipatione rates identify the two relevant scaling fields, the
phase diagram we obtain is similar that of deterministic
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4 [=a—aa8] proximate the avalanches by several series of successive
] . q_D:5§ topples. Thus, we prepare the system in one of the “natural”
aat s q=0.2| configurations corresponding to the limit of infinitesimal
X(E) 1 & —qg=0 | driving, Ah(x) = 4(t) 6(x), i.e., consisting of a single active
= "'-. site. The perturbation decays in the stationary subcritical
o I\ state as
oy pa(t) =t (t/t(€)), (28)
D N where we introduce the power-law exponerand the cutoff
; H-' characteristic time.. For a small perturbation close to the
0.5+ g S— stationary state, we conside,(t)=p,+ Sp(t), where
: i i Sopi(t) is the deviation of the densities from their stationary
s ] ' H ' 3 a e value. If we recall the expression of the order paramBter
(a) £ and rewrite its evolution equation
J
s * g=09 5 Pa=(1+Ulpspc)[ —pat (3= 1= €)pe(patdAcpe)l,
o e, + g=05
i:_ \"%\R + g=02 (29)
o ™ v q=0 we will obtain
o \
o Y
14 g d
5 R, E(fspa):(l""quspc)[_§pa+(g_1_f)pc‘spa
\\}\‘
4\\\1\ X (1+qupeps)]- (30)
‘\‘b;\, Then, the linearized dynamical equation in diagonal form is
R given by
‘ log, () J €
L] 10 7 _ _
£ (6Pa) <5Pa>( g_l). (3

FIG. 1. (a) The susceptibilityy.=dP,/dh as a function of a . L
dissipatione with different values ofg for a system with periodic o Which the solution is
boundary conditions and size=64. (b)The logy-log, plot of the
susceptibility versusy. The straight lines represent the fit of two 5Pa(t)~ex;{
values ofq (g=0 and 0.5. The mean-field critical exponeng
associated with the susceptibility gsindependent.

— €t
g-1

, (32

which implies =0. Since the relaxation behavior follows
sandpiled25], namely, that the model is supercritical for  an exponential law
>0, while forh=0 ande>0, it is subcritical and the dy-
namics displays avalanches. In spite of the internal disorder 6P, (1) ~exp( —t/ty), (33
induced by stochastic rules, the mean-field critical exponents
y, w, v, andé associated, respectively, with the susceptibil-the characteristic relaxation time depends on the toppling
ity y,x~e€ ?; the dissipatione, e~L #; the correlation Probability g and its behavior is given by
length&, x~ ¢ *; and the order parametér,, P,~h'? are
the same as those of the original mof25] (y=1, u=2, te~1le. (34

v=1/2, 6=1). These results agree with those obtained bygj,ce our model is based on stochastic rules, its dynamics is
Caldarelli[41], who introduced in the toppling rules a prob- gitterent from that of the deterministic sandpile model. Both
ability that depends on a parameterlike temperature. We havg.ie sites and critical sites which topple with a probability

studied numerically the model introduced by Bak, Tang, anq; contribute to the avalanche. We are therefore enable to
Weisenfeld(BTW) with open boundaries and a finite driving erjye scaling relations that allow us to compute the dynami-

rateh for a bidimensional system. The dissipation is consid-.g exponents as was done in R&$5]. Then, the distribution

ered only through the open boundary where the site transfei§, ¢ citical exponent is calculated using the relation be-

its energy outside. The variation of the order parameter Velg een the formalism presented above and the branching pro-
sush (Fig. 2) is linear with a slope that increases with the cesses.

system size a&? and a density of active sites that goes to
zero in theh—0 limit (6=1) independently ofy (Fig. 3),
which supports the result given by the mean-field theory.
Moreover, the “cluster variational” method takes into ac- The spreading of an avalanche in mean-field theory can
count the long-term behavior of the system and we can apbe described by a front consisting of noninteracting particles

B. Branching process and numerical simulations
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_l_64 h o =03
* ——128 *—g08
P"l 1 A 2R5 E i "#/'
o —v—q06 | _¥
0.3 _'. s = 1~
. q=|‘:| E
0.2 o
1 i 0,17
i s
0.1 7
] '1 0
00 4 R—— ——— > log+o (h)
0 1 2 3 4 5 6 o .
(a) hL FIG. 3. loglog, plot of the order parametd?, versush with
€=0.01,g=3, and system size=128. We show that the critical
Pu = [=m exponents is constant with the variation af.
T o L=128 that can either trigger subsequent activity or die out. This
N4 o =25 kind of process is well known and is called the branching
. procesg42]. The SOC has been investigated and it has been
q=|:13 proposed that the mean-field behavior of sandpile models
0.3 o can be described by a critical branching proc¢:§—
21,23,43. A branching procegst2] is defined by the number
0.0 of active sites that can either die or genermatew sites with
. <] . - . .
certain probabilities. The case=2 is the simpler example: a
A site relaxes with probabilityp, leading to two new active
0.1 ; sites, and it dies with probability (2p). There is a critical
valuep.= 1/2 such that fop>p, the probability to have an
o L . infinite avalanche is nonzero, while fp p, all avalanches

6 are finite. Thugpp= p.. corresponds to the critical case, where

(b) h |_:a avalanches are power-law distributg®il]. Thus, the ava-
lanche can be described as a branching process with an ef-

fective parameter that depends on the detail of the model

p. 4 _:_ L=64 under study.
i % L=128 In our model, the branching process is associated with the
4 =256 propagation of active and toppling critical sites in the sub-
94 critical regime. In the stationary state for=0, an active site
] and critical toppling site generatés=1, ... g—1 new ac-
0.3 g=0.54 tive and critical toppling sites with probabilities
‘ P =(1-€)Cq_1(pctUdps) (1= pc—udpg) ¥+ 7%,
0.2 ./ (35)
; while no active or toppling critical sites are generated with
0.14 probability
00 . . . B Po=e+(1—€)(1—pc—udgpy)® " (36)
0 = # e & 2 Then, the branching process control parameter for our model
lch hL. is given by
- 1
P=3=1 2 kKP=(1-a(petuapy,  (37)
FIG. 2. The order parameter as a function of the driving rate k
for different values ofg, (a) =0, (b) g=0.3, (¢) q=0.54 in the . . .
BTW model with boundary dissipation plotted for different system With a critical valueP = p¥ +udp? , wherep? andp} , are
sizesL. respectively, the statlonary values of critical and stable den-
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FIG. 4. The size distributio® (S) for two generationsi=16 andn= 20 with g=3. The dynamical exponent varies continuously with
g. We obtain for different values af ranging from O to 0.8, respectively=1.5, 1.37, 1.19, 1.07, and 0.98. The insets in these figures show
the numerical simulation of the BTW model with system dize32; the dynamical exponent takes, respectively, the vateek.28,1.23,

1.14, 1.05, and 0.94 fag=0, 0.1, 0.3, 0.5, and 0.8.

sities. Forqzo we recoveﬁcz 1/2, which is in agreement ><106 realizations. The model leads to a Variety of states with
with Ref.[21]. In our analysis, we focus on the model prop- widely varying avalanche sizes. We define the size of an
avalanche as the number of topplin§sand investigate the

study the model by carrying out simulations for different distribution of S In Fig. 4, we have shown for 16 and 20
system sizes withg=3, and averaging over typically 5 generations, the avalanche size distribution for different val-

erties in the critical steady state characterizedFy We
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s IV. CONCLUSION

To summarize, a sandpile model with a stochastic dynam-
ics is studied using a single-site approximation to the master
equation obtained from a mean-field theory. Within this ap-

] proach, and by computing the order parameter, we have pre-
1.2- sented the mean effect of the stochastic rule with probabilis-

1 tic toppling parameteq. In the limit of infinitesimal driving
117 h, the system is subcritical for>0 and displays a critical
. behavior. The phase diagram obtained from the control pa-
’ ®) rameters is similar to those of deterministic sandpile models.
0.9- The static critical exponentsy(u,v,8) are independent of
T . T . T . T . T the internal disorder, i.eq, and they keep the same values,

) ) within the mean-field theory, obtained for the sandpile model
with deterministic rules. In order to support the mean-field
results, we have studied numerically the BTW modeldin
=2 in both cases: with a fixed dissipati@anand periodic
boundary conditions so as to study the behavior of the sus-
ceptibility xy, and with a finite driving ratdr and boundary
dissipation for open boundary conditions, in order to show
ues of the toppling parameter. For q=0 we observe a that the order parameter vanishes linearly wifld=1). As
scaling regiorD(S)~S™ " with 7=3/2. Then, we find again a result, the predictions of the mean-field theory seem to be
the value given by both the mean-field theory and branchingorrect and valid for any dimensions independently of the
process for a deterministic sandpile model. By varying thanternal disorder. Since the dynamics of our model evolves
parameten, the critical state is ensured, but the value of thewithin stochastic rules, we are not able to establish scaling
critical exponentr decreases continuously by increasing therelations which allow us to compute the dynamical expo-
value ofg. This result is consistent with R€f32]. In Fig. 4.  nents. However, using the branching process we have de-
we have shown the size distribution fge=0.1, 0.3, 0.5, and fined an adequate control parameter for our model and gen-
0.8, which lead, respectively, to the critical exponents, erate avalanches of different sizes. Then, we have shown that
=1.37, 1.19, 1.07, and 0.98. In the lintjt— 1, the model is the size distribution critical exponent decreases continuously
deterministic but not equivalent to the model presented byy increasing the value af. Therefore, the dynamical expo-
Vespignani and ZappefR5]. Indeed, the dynamics is rather nents have a nonuniversal behavior, ieedependent behav-
different, since only critical sites that receive a grain of en-ior, in agreement with other stochastic sandpile mofi&ds.

ergy at a previous time topple with a probabilgy=1. Asa  This result has been confirmed using numerical simulations.
result, the model in the limit— 1, belongs to another uni- Since the metastability in sandpile models can result from
versality class. To support the result obtained using the€ompetition between friction and gravity effects, we think
branching process, we have performed numerical simulatiortdat varying critical exponents are the result of stochastic
for a BTW model on a square lattice of size=32. In Fig. 4, dynamics which model metastable sites. However, it is
we have shown that the numerical results agree with thoseorthwhile to confirm analytically this resuilt.

obtained by mean-field theory, namely, that the dynamical
critical exponentr decreases continuously by varying the
toppling probabilityg. We remark that the mean-field values
of r are greater than numerical ones, and they get closer as The authors are grateful to A. Vespignani for valuable
g—1 (Fig. 5. In addition, we note that the dynamical criti- comments and suggestions. This work was supported by the
cal exponents vary linearly within numerical simulations. program PARS Physique 035.

()]

1.3+

FIG. 5. Dynamical exponent versug obtained (a) by the
branching processes aiffd) by numerical simulation of the BTW
model.
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